Optimal adjustment paths in a monetary union
Ansgar Belke and Daniel Gros

No. 16-04 – May 2016

ROMEDiscussionPaperSeries

“Research on Money in the Economy” (ROME) is a private non-profit-oriented research network of and for economists, who generally are interested in monetary economics and especially are interested in the interdependences between the financial sector and the real economy. Further information is available on www.rome-net.org.

ISSN 1865-7052
Optimal adjustment paths in a monetary union

Ansgar Belke and Daniel Gros

Prof. Dr. Ansgar Belke
University of Duisburg-Essen
Department of Economics
Universitaetsstr. 12
D-45117 Essen
e-mail: ansgar.belke@uni-due.de

and

Institute for the Study of Labor (IZA) Bonn
Schaumburg-Lippe-Str. 5 – 9
D-53113 Bonn

Dr. Daniel Gros
Centre for European Policy Studies (CEPS)
1 Place du Congrès
B-1000 Brussels
e-mail: danielg@ceps.eu

The discussion paper represent the authors’ personal opinions and do not necessarily reflect the views of IZA Bonn.

NOTE: Working papers in the “Research On Money in the Economy” Discussion Paper Series are preliminary materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the author(s) and do not indicate concurrence by other members of the research network ROME. Any reproduction, publication and reprint in the form of a different publication, whether printed or produced electronically, in whole or in part, is permitted only with the explicit written authorisation of the author(s). References in publications to ROME Discussion Papers (other than an acknowledgment that the writer has had access to unpublished material) should be cleared with the author(s) to protect the tentative character of these papers. As a general rule, ROME Discussion Papers are not translated and are usually only available in the original language used by the contributor(s).

ROME Discussion Papers are published in PDF format at www.rome-net.org/publications/.

Please direct any enquiries to the current ROME coordinators
Prof. Dr. Albrecht F. Michler / Markus Penatzer, M.Sc.
Heinrich-Heine-University of Duesseldorf, Department of Economics, Universitaetsstr. 1,
Build. 24.31.01.01 (Oeconomicum), D-40225 Duesseldorf, Germany
Tel.: ++49(0)-211-81-15372
Fax: ++49(0)-211-81-15261
E-mail: helpdesk@rome-net.org
albrecht.michler@hhu.de or markus.penatzer@hhu.de
Abstract
Adjustment to an external imbalance is more difficult within a monetary union if wages are sticky. Periods of high unemployment are usually necessary to achieve the required real depreciation (internal devaluation). Gradual adjustment is usually recommended to distribute the output and employment cost over time. This paper takes into account that gradual adjustment also has a cost in terms higher current account deficits and thus a higher debt, and ultimately higher debt service costs. We calculate the optimal path/speed of price and wage adjustment in terms of deeper parameters like the slope of the Phillips curve, the degree of openness, etc. Gradual adjustment is not always optimal.

JEL-Classification: F41, F45, P11

Keywords: speed of adjustment, price and wage adjustment, internal devaluation, policy complementarities

Acknowledgments
We are grateful to Miguel Lebre de Freitas, Thomas Moutos and Francisco José Veiga for valuable comments and Irina Dubova for excellent research support.
1. Motivation

If an external devaluation (of the exchange rate) is not possible, as within the euro area, internal devaluation may serve as a substitute but requires significant and politically costly declines in both wages and prices (Wasmer, 2012, p. 769).

The optimal path for prices and wages involves a balance between two apparently conflicting objectives. One is to quickly restore competitiveness and the external balance. The other is to mitigate the deflationary effects resulting from an increase in the real value of private debt and the postponements of expenditure in case of deflation. “Debt outcomes are very sensitive to growth or variations in the speed of internal devaluation” (IMF, 2012, p. 90).

Recognizing the above-mentioned trade-off, labour market reforms aiming to remove downward wage rigidities in deficit countries are expected to contain unemployment (as wages will become more responsive to changes in employment) and to speed up the structural adjustment process towards exports. At the same time, however, such policies might also adversely affect consumer demand, tilting the economy away from internal balance.¹

Although they do not directly refer to an optimal pace of internal devaluation, some recent IMF Working Papers such as Kang and Shambaugh (2013, 2014), Tressel et al., (2014) and Tressel and Wang (2014) emphasize some a pattern. Above all they emphasise that the adjustment for the Southern European countries has come along with a substantial recession because unit labour cost improvements have been largely driven by falling employment, while much of the current account improvement was achieved through import compression due to the recession (see also IMF, 2013, p. 25). For instance, there is empirical evidence that an increase in programme countries’ exports might also result from a lack of domestic demand and hysteresis effects. In that case, firms stay in the market even if they incur losses in order to avoid exit and re-entry costs and thus switch from home to foreign markets (Belke, Oeking and Setzer, 2014).

A different question is on how fast the RER depreciation should be achieved so as to bring the economy to internal and external balance simultaneously. As mentioned above, this contribution strives to balance the benefits of restoring competitiveness against the deflationary effect of the devaluation. Some first considerations can be found in the following.

The remainder of the paper proceeds as follows. In section 2, some key fundamental conceptual issues are clarified. Section 3 develops the macroeconomic framework with an eye on the role of ideology and different schools of thought. In section 4, we come

¹ In practice, relative prices are adjusting at different pace across countries and with different compositions of wage cuts and labour shedding. See Tressel and Wang (2014).
up with a simple model to assess whether gradual adjustment or Cold Turkey is preferable from a social welfare perspective. Among others, we derive the optimum speed of internal adjustment and assess the welfare effects of alternative policy instruments.

2. Towards an empirical assessment of the optimal path of internal devaluation

There are two concepts, which arise often in the context of internal devaluations in the context of official adjustment programs:

What is the reason for the need for external adjustment? Official adjustment programs are needed (and accepted) usually when a country, or rather its government, has lost access to capital markets. This type of situation arises, usually only after a so-called sudden stop in capital inflows. Typically the country in question had experienced a period of high capital inflows which financed the combination of a domestic boom with a large current account deficit. This implies that the country needing an official adjustment program has accumulated a considerable stock of debt and faces two problems when the capital inflows stop:

A stock problem, in that often a large proportion of the accumulated debt was short term and refinancing of the stock might become impossible/extremely costly. Part of any adjustment program is thus to re-finance pre-existing debt coming due (or to organize a restructuring, like in the case of Greece) (Shambaugh, 2012, Bornhorst and Arranz, 2013 and Tressel, 2012).

A flow problem in that the current employment and production pattern resulted in a current account deficit (i.e. the demand for tradables exceeded the supply).

Our contribution focuses on the *flow problem*, i.e. how, and at what speed, to reduce the current account deficit. In the absence of official financing the country does not have any choice: The current account deficit must of course disappear when the capital inflows stop. This is what countries like Estonia, Lithuania and Bulgaria experienced around 2009: the huge capital inflows which had financed current account deficits of 10 to over 20 % of GDP had to disappear within a very short period of time because financing from private sources dried up and these countries did not receive (nor ask for) official support (Giavazzi and Spaventa, 2010).

The cases of some of the euro area countries (and Latvia) were different: When their governments lost access to financing in private markets they were offered substantial financial support from official sources (the IMF, the European Union and the European Central Bank).
This implies that in the case of some countries, private capital markets basically forced the economy into external balance, leaving governments and domestic actors with little choice. By contrast, in the case of the official adjustment programs the speed of external adjustment becomes a policy choice – and thus hotly contested. Governments of the countries concerned prefer of course a slow adjustment because this lowers the required combination of reduction in domestic absorption and lower wages. The creditor countries or other institutions providing finance prefer of course a quicker adjustment since this lowers the amount of risk they have to take.

The real life constraint both sides face is that in the short run a reduction in the current account adjustment can be achieved mainly through a reduction of domestic expenditure since domestic prices and wages adjust only slowly. Achieving external balance implies thus in the short run substantial costs in terms of unemployment. In the longer run, full employment can be restored if domestic wages and prices have fallen so that expenditure switching can work, via higher production of tradables and a switch in demand from imports towards domestically produced goods. From the point of view of the countries in crisis slower adjustment is thus always better. However, this point of view overlooks that fact that a slower adjustment means that the current account deficit persists for longer, implying that in the long run the country has to service a higher level of debt. Taking into account the longer term budget constraint thus implies that the choice is not so much between slow or quick adjustment today, but between more adjustment today and less adjustment tomorrow (because more adjustment today means a lower future debt level).

In that case, there is a trade-off between internal devaluation and unemployment: lack of a RER depreciation implies that a higher contraction of domestic expenditure will be needed to meet the external balance (usually depicted in a swan diagram). A faster RER depreciation would allow the economy to meet the external balance without the need to depress aggregate demand so much. Since the RER depreciation in a country such as Greece under the Troika programmes was insufficient, the aggregate demand fell more than needed, with a specially impact on investment, dooming the economy to a slower recovery and lower ability to reallocate resources from the non-tradable to the tradable sector. Thus, according to this view, a faster RER depreciation would imply less contraction, not more. There would be no two conflicting objectives. In that respect, we check in our model section 5.2. whether a higher degree of openness makes the overall adjustment less costly and, in the same vein, whether a steeper Phillips curve or a more elastic supply curve of exports have the same effect.

Another argument, which arises often in discussions about external adjustment, is, that a real devaluation increases the real value of debt denominated in foreign currency. This issues is independent of whether the devaluation as internal (when prices and wages decline) or external (nominal exchange rate depreciates). The real value of debt increases in both cases. And this will depress aggregate demand further. However, in
this context it is crucial to be precise about what is meant by an increase in the real value of debt. In the case of a nominal devaluation it is clear that the real value of all debt expressed in foreign currency will increase in terms of non-tradable goods as long as domestic prices and wages are sticky. However, debt expressed in domestic currency might actually lose some of its value in terms of domestic goods as long as there is some, partial, flexibility in domestic prices and wages.

Within a monetary union there is no distinction in terms of the currency of denomination of debt. When domestic prices and wages fall the value of all debt in terms of domestic good increases. However, the value of (all) debt will remain unchanged in terms of tradable goods since the home country is usually taken to be a price taker on global markets. Moreover, one has to distinguish between domestic and foreign debt. The fact that the real value of domestic debt increases should not have a large net impact on demand since the creditors gain what the debtors lose. Finally, the debt owed to foreign residents has in the end to be serviced by a transfer of tradable goods. This implies that the real depreciation required for an external adjustment does not necessarily increase the real burden of existing foreign debt.

The increase in the value of all debt in terms of domestic non-tradables should not have, on net, an income effect, but it could, exacerbate borrowing constraints. Thus, one could argue that a slower adjustment (i.e. a slower decline in domestic wages and prices) is a preferred strategy since it leads to a reduction of borrowing constraints and thereby a lower contraction of investment. In other words, with a slower adjustment in domestic wages it might be possible to increase the pace at which new capacity in the export sector is build up, ultimately thus accelerating the external adjustment and the return to full employment.

3. The macroeconomic framework: ideology and different schools of thought

As we have seen in several cases in the past, the ease with which internal adjustment can be implemented, is influenced the country’s overall vulnerability to adjustment and the government’s ability to design reforms in ways that spare its core constituency (Walter, 2014). Hence, the optimality of the internal adjustment path is a function of political-economic constraints (like government ideology) in the home country. For instance, one may argue that the internal adjustment should occur the more speedily, the lower the political-economic obstacles are (Zemanek, Belke and Schnabl, 2010). This is because otherwise this implies less reliance on (external) financing which lowers the danger of even more debt sustainability problems in the future. Or the necessary internal adjustment might be thwarted by interest groups and the resolution of the Greek crisis will continue to be a drawn-out, painful, and politically costly process.

Note that, even without the option of external adjustment, two additional crisis strategies remain, at least theoretically, for the Greek government in the current crisis
in addition to an internal adjustment by the deficit countries: internal adjustment by the surplus countries and a quasi-permanent financing of the deficit. Of course, external adjustment in terms of a depreciation of the euro in general (as currently enacted through QE) is also an option and the ECB has been actively working towards a weakening of the currency. As stated, for instance, by Biggs and Mayer (2014), owing to more generous external (credit) assistance for Greece, the optimal speed of internal adjustment could be lower and become conditional on “optimal” external assistance and, hence, even indeterminate. Anyway, materially slower adjustment would have required either even more support (Gros et al., 2014). A coordinated break-up of EMU has also been considered in policy circles and academic research (Walter, 2014, p. 8).

The discussion about adjustment in a monetary union has become highly politicised (in terms of “Keynesian versus Non-Keynesian”) and at the same time the discussion does not take place with reference to any fully-fledged model. This is a key problem since without an explicit framework, it become very difficult to discriminate between different views. A formal model has the advantage that different views of the world can be distinguished via different specific restrictions and assumptions in a formal model. It was extremely difficult to find any academic literature on the issue of optimal speed of internal devaluation in the strict technical sense. This is somewhat surprising given the implicit welfare function is generally taken to be convex in lost output or unemployment (usually the squared deviations from respective equilibrium values) and there exist benchmark, if not consensus, macro-models which related output to wages and price in the presence of nominal rigidities. We show that combination of these simple, standard elements leads to important insights.

So what is the core of the diametrically opposed Keynesian-type argument in favour of a trade-off between external and internal balance? In that respect, Wren-Lewis (2012) states: “The key macroeconomic question is how quick adjustment should be. Should competitiveness be restored quickly or slowly. Macroeconomics has a pretty clear answer which comes from the Phillips curve (of whatever variety) - slow is much more efficient.”

And Wren-Lewis (2015) argues with an eye on Latvia:

“Now this is all very stylised and partial equilibrium, but there is one important message that will survive complications. The Phillips curve tells us that reducing the price level gradually over time is more efficient than doing it quickly. So even if you believe that you have to stick with a fixed exchange rate, a short sharp recession is much less efficient than a more modest but prolonged recession. Thinking about the convexity of the social welfare function reinforces this point.

As a result, even if output growth this year and next year was over 5% p.a., and the country achieves a sustainable level of competitiveness, I would not call the Latvian experience a success story. The competitiveness correction will have cost the economy
a huge amount in wasted resources and unemployment misery, when it could have achieved this correction at a much reduced cost.”

For these arguments see also http://krugman.blogs.nytimes.com/2011/11/05/roubini-on-internal-devaluation/: “The case of Latvia’s “successful” (speedy) internal devaluation is not a model for the EZ periphery”.

We do not discuss how policy outside the country concerned could foster or even obviate the need for adjustment. For example, it has been argued, that the (external and internal) adjustment by the deficit countries could be much reduced, in a general equilibrium perspective by a symmetric adjustment in the surplus countries. We take external demand as given and thus do not consider these general equilibrium effects. Moreover, the external adjustment in the euro periphery would also be facilitated by a depreciation of the euro.

4. Gradual adjustment or Cold Turkey – A simple model

4.1 Motivation

A key problem of a country facing a ‘sudden stop’ to capital inflows is the optimal speed of adjustment. Countries receiving only limited financial support have little choice: when private capital inflows stop, and official financing is very limited, they have to adjust very quickly in the sense that the current account must almost instantaneously go into equilibrium. This was the case of the Baltic countries as shown in Gros et al. (2014).² In the cases of the euro area countries under financial stress (like Greece, Ireland and Portugal) official financial support was relatively plentiful. Here the speed of adjustment could be chosen by policy.

The key trade-off is simple: A quick elimination of the current account deficit has the advantage that it avoids the accumulation of further foreign debt (which tends to be expensive during a crisis). However, a quick turnaround in the current account requires an immediate sharp reduction in domestic absorption, because it takes time to increase exports, especially if the country does not have a flexible exchange rate.

At first sight, a ‘cold Turkey’ approach could thus require a sharper fall in demand and GDP, than a more gradual approach, which would give time for domestic prices and wages to adjust so that higher exports can contribute to closing the external deficit, thus sustaining demand and employment later. However, when one takes into account that wages are likely to adjust faster when domestic demand is very weak, it turns out that

² Note in this context that the labour markets in the Baltics were rather flexible. See Purfield and Rosenberg (2010).
a front-loaded adjusted improves the prospects for the future on two accounts: foreign
debt will be lower and wages will have fallen in the meantime, improving
competitiveness.

Our model allows one to put this trade off into more precise terms. The key result is
that the choice is not between gradual or rapid adjustment. With an inter-temporal
budget constraint the choice is only between adjustment today or adjustment tomorrow.

What remains as an argument for a gradual (or rather slower) approach is essentially
that the future is discounted: future pain counts for less than pain today. Whether a
gradual or a ‘cold Turkey’ approach is better depends thus on the strength of the
discount on the future, relative to the price of the additional foreign debt incurred in a
gradual adjustment (and the amount of future employment created by a quick
adjustment).

The purpose of the simple model presented here is to formalise these relationships and
trade-off in a simple, standard Keynesian type model in which import demand depends
on domestic absorption and domestic wages, which in turn react in a Phillips curve type
relationship to domestic demand (or rather the output gap). The model should be useful
to describe the choices facing a member country of the euro area, or countries with a
hard peg, like the Baltic countries whose currencies were linked to the euro.

4.2 The model

The purpose of our model is to capture the essential elements mentioned above. There
are only two periods: the present and the future. The basic decision is thus only about
the present period. We assume that policy makers can somehow chose the state of the
economy (in terms of the output gap) today. Once this decision has been taken, the
future is determined; in the sense that any adjustment, which has not been achieved
today must come tomorrow.

The model consists of four basic relationships or building blocks:

1. The current account at any point in time (which is equal to the trade balance
 plus the interest payments on the accumulated foreign debt) depends on
domestic demand in the same period and wages in the past.
2. Wages are sluggish, but they react to unemployment or the output gap.
3. The country faces an inter-temporal budget constraint in the sense that the
discounted sum of the trade accounts cannot surpass a certain limit (given by
the availability of private and official financing).
4. Policy consists of minimizing a standard social loss function.
The basic working mechanisms start from the observation, that income and the real exchange rate determine the current account. This is an empirical relationship, which is quite robust, and has been estimated very frequently. Although the precise parameter estimates vary a great deal there is general agreement in the literature about this specification.

Formally, the first building block is thus a simple equation for the current account (or rather the trade balance given past debt):

(1) \(cab_t = -\beta y_t - \gamma w_{t-1} \)

Where \(y \) denotes income (which can be understood as the deviation from equilibrium or trend) and \(cab_t \) is the current account balance. Domestic income (in the current period) has an immediate impact on imports and hence the current account. Higher income leads of course to a deterioration of the current account (beta is positive and indicates the degree of openness of the economy).

Exports, however, react to (domestic) wages, \(w_t \), only with a lag. The current account in the present period (\(cab \)) is thus a function of wages in the previous period (\(w_{t-1} \)). The parameter gamma is also positive as higher wages should mean lower exports. A higher value of gamma indicate a higher elasticity of export demand to the real exchange rate measured in relative wages (foreign wages are given and taken as constant).

The second building block concerns the adjustment of wages. They are assumed to follow a standard Phillips curve type relationship: when income is high (the output gap is small) wages increase:

(2) \(w_t - w_{t-1} = \phi y_t \)

Without loss of generality, the wage rate inherited from the previous period (\(w_{t-1} \)) can be normalised to zero. However, as shown below this normalization has implications for the intertemporal budget constraint.

This mechanism for the adjustment in wages implies that the trade balance during the second period is given by:

(3) \(cab_{t+1} = -\beta y_{t+1} - \gamma w_t = -\beta y_{t+1} - \gamma \phi y_t \)

The trade balance account in any period is thus a function not only of current demand conditions, but also, indirectly, of past ones.

This facilitates the exposition of the third building block, namely the budget constraint. It takes the form of the condition that the discounted value of the external deficits incurred in the current period, and the future period must sum to zero.
(4) \(\Omega c_{ab_t} + c_{ab_{t+1}} = 0 \)

Where the parameter omega denotes the interest factor by which a deficit during the first period increases the overall foreign debt of the country at the end of the second period (\(\Omega > 1 \)).

Using equations (1) and (3) in (4) shows how the output gaps in both periods are related, if the country has a ceiling on the foreign debt it can accumulate (or has to repay) over both periods:

\[
(5) \quad 0 = \Omega (\beta y_t + \gamma \phi w_{t-1}) + (\beta y_{t+1} + \gamma \phi y_{t+1} + w_{t-1})
\]

The wage rate inherited from the past (\(w_{t-1} \)) has been made explicit in this equation to show that a high initial wage rate is equivalent to a certain level of external debt. This can be seen by rewriting the intertemporal budget constraint as:

\[
(5)' \quad -w_{t-1}(\Omega \gamma + \gamma) = D = \Omega \beta y_t + (\beta y_{t+1} + \gamma \phi y_{t+1})
\]

A high inherited wage rate (\(w_{t-1} > 0 \)) is thus equivalent to have a certain amount of foreign debt (\(D < 0 \)). We concentrate henceforth on the case of a country in need of adjustment in the sense that it enters the first period with a wage rate above the equilibrium level. The impact of this adjustment need on the external balance is summarized in the parameter D, which is thus assume to be negative.

D does not necessarily need to be negative. In the case of a country entering the current period with an undervalued wage rate (\(w_{t-1} < 0 \)), D would be positive. More in general, D can be thought as the sum of the total amount of financing available for the economy. In the case of countries under an adjustment program D would be the sum of the amount of official financing available during the present, i.e. the first period adjusted for the negative impact of high, initial wages.

In the case of a country entering the first period with foreign debt (and without the possibility of default) D would be negative even if the initial wage rate is at the equilibrium level (\(w_{t-1} = 0 \)) because in this case the country would need to run (an average) current account surpluses over the current and future period.

For the remainder we will continue with denoting D as the algebraic sum of the external financing available plus the impact of the initial conditions resulting from deviations of the initial wage rate from its equilibrium level of zero. A negative value of D denotes an initial adjustment need.

The trade-off between demand today and demand tomorrow (ceteris paribus the external debt ceiling), is thus summarized by:

\[
(6) \quad -(\Omega + \gamma \phi / \beta) y_t + D / \beta = y_{t+1}
\]
Higher demand today means lower demand tomorrow, both because of the cost of debt \((\omega > 1)\) and the fact that higher demand today keeps wages up today and thus reduces future exports.

This relationship is a key insight because it shows that a gradual adjustment involves a trade-off between lower domestic activity today or tomorrow, not higher activity in all periods. The very term ‘gradual adjustment’ is actually not appropriate since it suggests that somehow it is possible to have a higher average path for domestic demand than if the current account adjusts immediately. The inter-temporal budget constraint implies that this is not possible: less adjustment today implies necessarily more adjustment tomorrow.

Inspection of relationship (6) shows that a steeper Phillips curve makes the trade-off between today and tomorrow steeper in the sense that a given adjustment today is followed by a stronger rebound in the second period.

The impact of a higher degree of openness (higher beta) on the adjustment speed is less clear. A higher degree of openness means that income has to fall less for any given adjustment in the external balance. However, this effect works in the same way in both periods and thus has little direct bearing on the choice whether to adjust today or tomorrow. But it is clear that a higher degree of openness reduces the amount of income reduction which is necessary for any given amount of the initial adjustment need as summarized by the parameter D. The higher the inherited adjustment need (or inherited debt) the lower will be the level of income (or output gap) that can be maintained (over both periods).

To simplify the notation it will be convenient to summarize the influence of various parameters in equation (6):

\[
(7) \left(\frac{D}{\beta} \right) - \Gamma y_t = y_{t+1},
\]

with \((\Omega + \gamma \phi / \beta) \equiv \Gamma > 1\).

The composite parameter gamma is larger than one because the trade-off between today and tomorrow is greater than one to one: ‘Austerity’, interpreted as a reduction in current demand yields a double benefit in the future: lower debt servicing costs and higher exports because wages will be more competitive.

The two parameters \(\gamma\) and \(\phi\) always appear together because the indirect impact of lower demand on the (future) current account depends both on the slope of the Phillips curve and the elasticity of exports with respect to wages.

The constraint resulting from the external budget restriction and the working of the economy does not allow one, per se, to make any inferences about what policy should do. It only shows the trade-off between the two periods.
The fourth building block concerns the policy problem, which is to minimize the present value of the social loss from the (unavoidable) adjustment. The social loss is modelled in a standard way:

\[(8) \quad L = \Theta(y_t)^2 + (y_{t+1})^2\]

Where \(\Theta\) represents the degree of preference for the present of the social planner, with \(\Theta > 1\). In a crisis situation, when risk premia are high one can assume that the market interest rate is higher than the social discount rate, and thus that \(\Theta < \Omega\). It is under these circumstances that an adjustment program makes sense.

Note that it is implicitly assumed that \(y_t\) is a policy variable. Government cannot of course determine demand directly, but it is assumed here that fiscal policy (‘austerity’) has a direct impact on demand.) There might of course be a difference between the degree of time preference between society and the policy makers.

4.3 The optimal speed of adjustment

Minimizing the social loss with respect to \(y_t\), subject to the budget constraint yields the standard FOC:

\[(9) \quad \frac{\partial L}{\partial y_t} = 0 = \Theta 2(y_t) + 2(y_{t+1}) \left[\frac{\partial y_{t+1}}{\partial y_t} \right] = \Theta 2y_t - 2\left[(D/\beta) - \Gamma y_t \right] \gamma = 0 ,\]

where the second equality sign is based on the relationship between income today and the future from equation (7). This can then be simplified to:

\[(10) \quad y_t \left(\Theta + \Gamma^2 \right) - \Gamma (D/\beta) = 0\]

This equation can be solved for the income in the present period, which minimizes the social loss, \(y_{t,\text{min socloss}}\):

\[(11) \quad y_{t,\text{min socloss}} = \frac{D\Gamma}{\beta(\Theta + \Gamma^2)}\]

As expected, the best (or rather unavoidable) choice is to keep the current period income low if there is an initial over-valuation (\(D < 0\), if \(w_{t+1} > 0\)). The reverse is also true: a reduction in the debt as in the Greek PSI operation of 2012 would increase \(D\) (make is less negative) allowing for a higher income level to be maintained. Equation (11) confirms that for a country without any adjustment need (\(D = 0\)) the output gap should be maintained at zero.
This result (11) only shows the amount of adjustment during the current period. The key issue to be addressed here is, however, the time path of adjustment, i.e. income today versus income tomorrow.

Substituting the result for the current income, which minimizes the social loss (equation (10)) into the relationship between income today and in the future from the external budget constraint yields a result for the optimal path of adjustment, i.e. the difference between the output gap in the two periods:

\[
y_{t+1} - y_{t,\text{min soc loss}} = \frac{D \beta (\Theta - \Omega - \gamma \phi)}{\Theta \beta^2 + \Omega^2 \beta^2 + \gamma^2 \beta^2 + 2 \Omega \gamma \beta} = \frac{D (\Theta - \Gamma)}{\beta (\Theta + \Gamma)}
\]

This equation confirms that the output gap should be zero also in the second period if there is no initial adjustment need \((D=0)\). However, if there is an adjustment need \((<0)\), the nominator of the fraction in equation (12) suggests that the second period output gap is likely to be smaller (in absolute value) than the one in the first period. This implies that ‘gradual’ adjustment under which the output gap is increasing (from a very negative base) is not an optimal policy. A sufficient, but not necessary condition for this result is that the cost of debt is higher than the discount factor in the social loss function \(\Omega > \Theta\). This is likely to be the case since in a crisis risk premia are usually elevated for a country with an adjustment need (and a fortiori for a country which needs an adjustment program, which becomes necessary only when the risk premia are so high as to preclude market access).

The optimal policy described in equation (12) does not imply a ‘cold Turkey’ approach either if one defines cold Turkey as a policy under which the output gap is so negative in the first (the adjustment) period that it can become later positive on the back of very competitive wage rates. Equation (11) together with equation (7) implies that if \(D\) is negative, the output gap should be negative in both periods.

The main result is that that even if one takes into account the convexity of social loss functions and preference for later adjustment one still finds that a certain initial overshooting in the adjustment remains preferable in the sense that the optimal output gap during the adjustment period is likely to be larger than the one following one.

Turning to the general case (under which \(D\) does not have to be negative) one can calculate the ratios of the output gaps in the two periods from the equations (11) and (7) which describe respectively social preferences and the inter-temporal trade-off resulting from the budget constraint.

3 One needs to use (11) in (7) and solve for \(y_{t+1}\) and \(y_t\).
This result shows that the adjustment should be distributed over the two periods in a proportion, which is determined by the ratio of the time preference parameter in the social loss function to the other parameters of the economy. The bigger the weight of the present in the social loss function (the higher capital theta), the more of the adjustment will be pushed into the future. The level of external debt accumulation determines the level of income that can be maintained in both periods, but does not influence the ratio, or the speed of adjustment.

The result (13) also implies that a higher cost of financing external deficits during the adjustment period (a higher value of capital omega) should encourage a stronger initial adjustment if D is negative. A more open economy (higher value of beta) also implies an incentive to post-pone the adjustment as well as a higher elasticity of export revenue with respect to wage costs (higher value of gamma) or a steeper Philips curve.

4.4 Alternative policy instruments

So far it has been assumed that the only policy instrument was ‘austerity’ i.e. depressing demand to lower imports and wages. The fiscal consolidations which had to be undertaken in the peripheral countries were in many cases achieved via tax increases. This raises the issue of what taxes should have been increased.

Increasing direct taxes could be seen as particularly inappropriate because exporters have to operate in the formal economy and might thus de facto be the one sector which actually feels an increase in effective taxation (whereas the non-tradable, often informal, sector might be able to evade higher income tax rates). This would imply an increase in effective wage costs in the tradable sector, which could be modelled as $w(1+\text{tax})$, where ‘tax’ indicates the increase in tax rate during the second period. The external debt ceiling will then be satisfied by:

$$ (5)' \quad D = -\Omega \beta y + (\beta y - \gamma \phi y) - \gamma \text{tax} $$

The trade-off between demand today and demand tomorrow (given the external debt ceiling), then worsens to:

$$ (6)' \quad (\Omega + \gamma \phi / \beta) y = D / \beta - \gamma \text{tax} / \beta = y_{t+1} $$

The fall in domestic demand will, ceteris paribus, have to be stronger. This modification would not affect, however, the incentives to push the adjustment into the future. The
debt ceiling would be increased (in absolute value) by the impact of the shift of the implicit export supply equation, but the relation between income today and tomorrow in equation (13) would not be affected.

The same should also hold true of any exogenous wage reduction. The labour market reforms contained in the adjustment program could be interpreted in two ways: part of the measures contained cuts public sector and in minimum wages (presumably mainly for the private sector). Given that any change in minimum wages has an impact on other wages as well, this could be interpreted as an attempt to engineer an exogenous reduction in wages. In this model this should have allowed a higher demand level to be maintained in both periods, but would not affect the optimal speed of adjustment.

Another part of the labour market reforms, such as changes in wage bargaining systems, could be interpreted as making the Phillips curve steeper. As shown above this would strengthen the case of an immediate adjustment in demand (or austerity) because the pay-off from a stronger fall in demand today in terms of lower wages would be stronger the steeper the Phillips curve.

4.5 Reducing the overall cost of adjustment

The overall cost of adjustment can be calculated in terms of the social loss function, which can be re-written as:

\[
L = \Theta(y_t)^2 + (y_{t+1})^2 = (y_t)^2 \left[\Theta + \left(\frac{(y_{t+1})}{(y_t)} \right)^2 \right]
\]

Using the relationship (13) which determines the optimal speed of adjustment and the formula for the loss minimizing income in the current period (equation ()) yields

\[
L = \Theta \left(\frac{D\Gamma}{\beta(\Theta + \Gamma^2)} \right)^2 \left[\Theta + \left(\frac{\Theta}{\Gamma} \right)^2 \right] = \left[\frac{D\Gamma}{\beta(\Theta + \Gamma)} \right]^2 \left[\frac{\Theta}{\Gamma} \left(\Theta + \frac{\Theta}{\Gamma} \right) \right] = \left[\frac{D\Gamma}{\beta(\Theta + \Gamma)} \right]^2 \frac{\Theta}{\Theta + \Gamma}
\]
This equation could be used to determine which parameters make the overall adjustment more costly.

Recall that \((\Omega + \gamma \phi / \beta) = \Gamma \geq 1 \).

If follows that a higher degree of openness (higher beta) makes the overall adjustment less costly. A steeper Phillips curve (or a more elastic supply curve of exports) also makes the overall adjustment less costly.

The emphasis on labour market reforms in adjustment programs is thus justified in the sense that a steeper Phillips curve reduces the cost of adjustment. However, it is also clear from our analysis that labour market reforms can only reduce, not eliminate the adjustment costs that arise when the economy has to switch resources from the domestic to the tradables sector.

5 Conclusions

In this paper, we provided a framework to think about the optimal path of adjustment for a country, which starts the current period with either a large foreign debt or a wage rate above the level which would allow for external balance at full employment.

Modelling this situation allows one to show which parameters would justify a quick adjustment.

The question on the optimal path for prices and wages involves a balance between two apparently conflicting objectives. One is to restore competitiveness and the external balance, delivering on exports as the driver of growth. The other is the loss of output and employment that result from depressing demand during the adjustment.

Most policy evaluations of the adjustment process in the euro periphery have concentrated only on the high cost in terms of unemployment, arguing that a slower pace of adjustment would have involved lower costs. However, this line of arguments does not take into account that a slower adjustment (in terms of less unemployment and thus less of a fall in wages) also leads to a slower external adjustment, thus burdening the country with a higher foreign debt. A simple model with an intertemporal budget constraint thus shows immediately that gradual adjustment is not a free lunch, but has its costs in higher future debt service.

One key result of our simple model is that a fairly rapid adjustment is optimal even allowing for the usual convexity of social loss functions in the output gap and a preference for later adjustment. We find that under the most likely parameter constellations bringing most, but not all, of the adjustment forward, would be a policy which minimizes the social loss.
References

Walter, Stefanie, 2014, ‘Vulnerability to Adjustment and Crisis Politics in Eastern Europe and the Eurozone‘, University of Zurich, mimeo.

The following ROME Discussion Papers have been published since 2007:

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Two-Pillar Monetary Policy and Bootstrap Expectations</td>
<td>Peter Spahn</td>
</tr>
<tr>
<td>2007</td>
<td>Money and Housing – Evidence for the Euro Area and the US</td>
<td>Claus Greiber, Ralph Setzer</td>
</tr>
<tr>
<td>2007</td>
<td>Interest on Reserves and the Flexibility of Monetary Policy in the Euro Area</td>
<td>Ulrike Neyer</td>
</tr>
<tr>
<td>2008</td>
<td>Global Liquidity and House Prices: A VAR Analysis for OECD Countries</td>
<td>Ansgar Belke, Walter Orth, Ralph Setzer</td>
</tr>
<tr>
<td>2008</td>
<td>Measuring the Quality of Eligible Collateral</td>
<td>Philipp Lehmecker, Martin Missong</td>
</tr>
<tr>
<td>2008</td>
<td>The Quality of Eligible Collateral and Monetary Stability: An Empirical Analysis</td>
<td>Philipp Lehmecker</td>
</tr>
<tr>
<td>2008</td>
<td>Interest Rate Pass-Through in Germany and the Euro Area</td>
<td>Julia von Borstel</td>
</tr>
<tr>
<td>2009</td>
<td>Interest Rate Rules and Monetary Targeting: What are the Links?</td>
<td>Christina Gerberding, Franz Seitz, Andreas Worms</td>
</tr>
<tr>
<td>2009</td>
<td>Current Account Imbalances and Structural Adjustment in the Euro Area: How to Rebalance Competitiveness</td>
<td>Ansgar Belke, Gunther Schnabl, Holger Zemanek</td>
</tr>
<tr>
<td>2009</td>
<td>A Simple Model of an Oil Based Global Savings Glut – The “China Factor” and the OPEC Cartel</td>
<td>Ansgar Belke, Daniel Gros</td>
</tr>
<tr>
<td>2009</td>
<td>Die Auswirkungen der Geldmenge und des Kreditvolumens auf die Immobilienpreise – Ein ARDL-Ansatz für Deutschland</td>
<td>Ansgar Belke</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2009</td>
<td>Does the ECB rely on a Taylor Rule? Comparing Ex-Post with Real Time Data</td>
<td>Ansgar Belke, Jens Klose</td>
</tr>
<tr>
<td>2009</td>
<td>The Importance of Global Shocks for National Policymakers – Rising Challenges for Central Banks</td>
<td>Ansgar Belke, Andreas Rees</td>
</tr>
<tr>
<td>2009</td>
<td>Pricing of Payments</td>
<td>Malte Krüger</td>
</tr>
<tr>
<td>2010</td>
<td>Monetary Policy, Global Liquidity and Commodity Price Dynamics</td>
<td>Ansgar Belke, Ingo G. Bordon, Torben W. Hendricks</td>
</tr>
<tr>
<td>2010</td>
<td>Is Euro Area Money Demand (Still) Stable? Cointegrated VAR versus Single Equation Techniques</td>
<td>Ansgar Belke, Robert Czudaj</td>
</tr>
<tr>
<td>2010</td>
<td>European Monetary Policy and the ECB Rotation Model Voting Power of the Core versus the Periphery</td>
<td>Ansgar Belke, Barbara von Schnurbein</td>
</tr>
<tr>
<td>2010</td>
<td>Short-term Oil Models before and during the Financial Market Crisis</td>
<td>Jörg Clostermann, Nikolaus Keis, Franz Seitz</td>
</tr>
<tr>
<td>2010</td>
<td>Financial Crisis, Global Liquidity and Monetary Exit Strategies</td>
<td>Ansgar Belke</td>
</tr>
<tr>
<td>2010</td>
<td>How much Fiscal Backing must the ECB have? The Euro Area is not the Philippines</td>
<td>Ansgar Belke</td>
</tr>
<tr>
<td>2010</td>
<td>Staatliche Schuldenkrisen – Das Beispiel Griechenland</td>
<td>Heinz-Dieter Smeets</td>
</tr>
<tr>
<td>2010</td>
<td>Heterogeneity in Money Holdings across Euro Area Countries: The Role of Housing</td>
<td>Ralph Setzer, Paul van den Noord, Guntram B. Wolff</td>
</tr>
<tr>
<td>2010</td>
<td>Driven by the Markets? ECB Sovereign Bond Purchases and the Securities Markets Programme</td>
<td>Ansgar Belke</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2010</td>
<td>Asset Prices, Inflation and Monetary Control – Re-inventing Money as a Policy Tool</td>
<td>Peter Spahn</td>
</tr>
<tr>
<td>2010</td>
<td>The Euro Area Crisis Management Framework: Consequences and Institutional Follow-ups</td>
<td>Ansgar Belke</td>
</tr>
<tr>
<td>2010</td>
<td>Liquiditätspräferenz, endogenes Geld und Finanzmärkte</td>
<td>Peter Spahn</td>
</tr>
<tr>
<td>2010</td>
<td>Reinforcing EU Governance in Times of Crisis: The Commission Proposals and beyond</td>
<td>Ansgar Belke</td>
</tr>
<tr>
<td>2011</td>
<td>Current Account Imbalances in the Euro Area: Catching up or Competitiveness?</td>
<td>Ansgar Belke, Christian Dreger</td>
</tr>
<tr>
<td>2011</td>
<td>Volatility Patterns of CDS, Bond and Stock Markets before and during the Financial Crisis: Evidence from Major Financial Institutions</td>
<td>Ansgar Belke, Christian Gokus</td>
</tr>
<tr>
<td>2011</td>
<td>Cross-section Dependence and the Monetary Exchange Rate Model – A Panel Analysis</td>
<td>Joscha Beckmann, Ansgar Belke, Frauke Dobnik</td>
</tr>
<tr>
<td>2011</td>
<td>Ramifications of Debt Restructuring on the Euro Area – The Example of Large European Economies’ Exposure to Greece</td>
<td>Ansgar Belke, Christian Dreger</td>
</tr>
<tr>
<td>2011</td>
<td>Currency Movements Within and Outside a Currency Union: The Case of Germany and the Euro Area</td>
<td>Nikolaus Bartzsch, Gerhard Rösl, Franz Seitz</td>
</tr>
<tr>
<td>2012</td>
<td>Effects of Global Liquidity on Commodity and Food Prices</td>
<td>Ansgar Belke, Ingo Bordon, Ulrich Volz</td>
</tr>
<tr>
<td>2012</td>
<td>Exchange Rate Bands of Inaction and Play-Hysteresis in German Exports – Sectoral Evidence for Some OECD Destinations</td>
<td>Ansgar Belke, Matthias Göcke, Martin Günther</td>
</tr>
</tbody>
</table>
05 2012 Interest Rate Pass-Through in the EMU – New Evidence from Nonlinear Cointegration Techniques for Fully Harmonized Data
Joscha Beckmann
Ansgar Belke
Florian Verheyen

06 2012 Monetary Commitment and Structural Reforms: A Dynamic Panel Analysis for Transition Economies
Ansgar Belke
Lukas Vogel

07 2012 The Credibility of Monetary Policy Announcements: Empirical Evidence for OECD Countries since the 1960s
Ansgar Belke
Andreas Freytag
Jonas Keil
Friedrich Schneider

01 2013 The Role of Money in Modern Macro Models
Franz Seitz
Markus A. Schmidt

02 2013 Sezession: Ein gefährliches Spiel
Malte Krüger

03 2013 A More Effective Euro Area Monetary Policy than OMTs – Gold Back Sovereign Debt
Ansgar Belke

04 2013 Towards a Genuine Economic and Monetary Union – Comments on a Roadmap
Ansgar Belke

05 2013 Impact of a Low Interest Rate Environment – Global Liquidity Spillovers and the Search-for-yield
Ansgar Belke

06 2013 Exchange Rate Pass-Through into German Import Prices – A Disaggregated Perspective
Joscha Beckmann
Ansgar Belke
Florian Verheyen

07 2013 Foreign Exchange Market Interventions and the ¥ Exchange Rate in the Long Run
Joscha Beckmann
Ansgar Belke
Michael Kühl

08 2013 Money, Stock Prices and Central Banks – Cross-Country Comparisons of Cointegrated VAR Models
Ansgar Belke
Marcel Wiedmann

09 2013 3-Year LTROs – A First Assessment of a Non-Standard Policy Measure
Ansgar Belke

10 2013 Finance Access of SMEs: What Role for the ECB?
Ansgar Belke

11 2013 Doomsday for the Euro Area – Causes, Variants and Consequences of Breakup
Ansgar Belke
Florian Verheyen

12 2013 Portfolio Choice of Financial Investors and European Business Cycle Convergence – A Panel Analysis for EU Countries
Ansgar Belke
Jennifer Schneider
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Exports and Capacity Constraints – A Smooth Transition Regression Model for Six Euro Area Countries</td>
<td>Ansgar Belke, Anne Oeking, Ralph Setzer</td>
</tr>
<tr>
<td>2013</td>
<td>The Transmission of Oil and Food Prices to Consumer Prices – Evidence for the MENA countries</td>
<td>Ansgar Belke, Christian Dreger</td>
</tr>
<tr>
<td>2013</td>
<td>Target-balances: The Greek Example</td>
<td>Malte Krüger</td>
</tr>
<tr>
<td>2013</td>
<td>Competitiveness, Adjustment and Macroeconomic Risk Management in the Eurozone</td>
<td>Peter Spahn</td>
</tr>
<tr>
<td>2013</td>
<td>Contextualizing Systemic Risk</td>
<td>Lukas Scheffknecht</td>
</tr>
<tr>
<td>2014</td>
<td>Exit Strategies and Their Impact on the Euro Area – A Model Based View</td>
<td>Ansgar Belke</td>
</tr>
<tr>
<td>2014</td>
<td>Monetary Dialogue 2009-2014: Looking backward, looking forward</td>
<td>Ansgar Belke</td>
</tr>
<tr>
<td>2014</td>
<td>Non-Standard Monetary Policy Measures – Magic Wand or Tiger by the Tail?</td>
<td>Ansgar Belke</td>
</tr>
<tr>
<td>2014</td>
<td>Böhm-Bawerk und die Anfänge der monetären Zinstheorie</td>
<td>Peter Spahn</td>
</tr>
<tr>
<td>2014</td>
<td>State-of-play in Implementing Macroeconomic Adjustment Programmes in the Euro Area</td>
<td>Daniel Gros, Cinzia Alcidi, Ansgar Belke, Leonor Coutinho, Alessandro Giovannini</td>
</tr>
<tr>
<td>2014</td>
<td>Der Transaktionskassenbestand von Euro-Münzen in Deutschland</td>
<td>Markus Altmann, Nikolaus Bartzsch</td>
</tr>
<tr>
<td>2014</td>
<td>The Volume of Euro Coins held for Transaction Purposes in Germany</td>
<td>Markus Altmann, Nikolaus Bartzsch</td>
</tr>
<tr>
<td>2014</td>
<td>Do the poor pay for card rewards of the rich?</td>
<td>Malte Krüger</td>
</tr>
<tr>
<td>2014</td>
<td>The Bank Lending Channel in a Simple Macro Model – How to Extend the Taylor Rule?</td>
<td>Peter Spahn</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>2014</td>
<td>Sacrifice Ratios for Euro Area Countries: New Evidence on the Costs of Price Stability</td>
<td>Ansgar Belke, Tobias Böing</td>
</tr>
<tr>
<td>2015</td>
<td>Zins- und Wohlfahrtseffekte extremer Niedrigzinspolitik für die Sparer in Deutschland</td>
<td>Gerhard Rösl, Karl-Heinz Tödter</td>
</tr>
<tr>
<td>2015</td>
<td>Banking Union as a Shock Absorber</td>
<td>Ansgar Belke, Daniel Gros</td>
</tr>
<tr>
<td>2015</td>
<td>The Demand for Euro Banknotes Issued in Germany: Structural Modelling and Forecasting</td>
<td>Nikolaus Bartzsch, Franz Seitz, Ralph Setzer</td>
</tr>
<tr>
<td>2015</td>
<td>Exchange Rate Bands of Inaction and Play-Hysteresis in Greek Exports to the Euro Area, the US and Turkey – Sectoral Evidence</td>
<td>Ansgar Belke, Dominik Kronen</td>
</tr>
<tr>
<td>2015</td>
<td>Beyond Balassa and Samuelson: Real Convergence, Capital Flows, and Competitiveness in Greece</td>
<td>Ansgar Belke, Ulrich Haskamp, Gunther Schnabl, Holger Zemanek</td>
</tr>
<tr>
<td>2015</td>
<td>Regional Bank Efficiency and its Effect on Regional Growth in “Normal” and “Bad” Times</td>
<td>Ansgar Belke, Ulrich Haskamp, Ralph Setzer</td>
</tr>
<tr>
<td>2015</td>
<td>Brexit: Chance oder Untergang für Großbritannien</td>
<td>Markus Penatzer</td>
</tr>
<tr>
<td>2015</td>
<td>Did Quantitative Easing affect interest rates outside the US? New evidence based on interest rate differentials</td>
<td>Ansgar Belke, Daniel Gros, Thomas Osowski</td>
</tr>
<tr>
<td>2016</td>
<td>Transaction Balances: From accounting and economics to biology</td>
<td>Nikolaus Bartzsch, Franz Seitz</td>
</tr>
<tr>
<td>2016</td>
<td>(When) should a non-euro country join the banking union?</td>
<td>Ansgar Belke, Anna Dobrzańska, Daniel Gros, Paweł Smaga</td>
</tr>
<tr>
<td>2016</td>
<td>Population growth, saving, interest rates and stagnation</td>
<td>Peter Spahn</td>
</tr>
<tr>
<td>2016</td>
<td>Optimal adjustment paths in a monetary union</td>
<td>Ansgar Belke, Daniel Gros</td>
</tr>
</tbody>
</table>